
7 Proof of theorems

We will give the theorems in Sections 2 and 6. For this, this section employs an approach

to obtaining parabolic representations by means of quandles. This approach using quandle

has some benefits: first, while SL2(F ) is of dimension 3 over F , the approach can deal with

parabolic representations from a certain 2-dimensional object (A2 \ 0)/{±}; see Proposition

7.1 (cf. [Ri1] for a group theoretic approach). Furthermore, the results in [CEGS, Eis, Nos]

of quandle theory gave some topological applications; Here the point is that quandle theory

sometimes ensures non-triviality of some knot-invariants and makes a reduction to knot di-

agrams without 3-dimensional discussion of R3 \ L. Correspondingly, we will see that our

setting from SL2(F ) satisfies the conditions in the results, and give proofs of Theorems 3.4

and 6.1.

7.1 Parabolic representations in terms of quandles

Let us begin by reviewing quandles. A quandle [Joy] is a set, X, with a binary operation

◁ : X ×X → X such that

(I) The identity a◁a = a holds for any a ∈ X.

(II) The map (•◁a) : X → X defined by x 7→ x◁a is bijective for any a ∈ X.

(III) The identity (a◁b)◁c = (a◁c)◁(b◁c) holds for any a, b, c ∈ X.

A map f : X → Y between quandles is a (quandle) homomorphism, if f(a◁b) = f(a)◁f(b)

for any a, b ∈ X. For example, any group G is a quandle with the conjugacy operation

x◁y := y−1xy for any x, y ∈ G, and is called the conjugacy quandle in G and denoted by

Conj(G). Furthermore, given an infinite field F and r ∈ F×, let us consider a quotient set

F 2 \ {(0, 0)}/ ∼ subject to the relation (a, b) ∼ (−a,−b), and let us equip this set with a

quandle operation(
a b

)
◁

(
c d

)
=

(
a b

)( 1 + rcd d2r
−c2r 1− cdr

)
.

This quandle in the case F = C was introduced in [IK, §5]. Furthermore, consider the map,

ιr : (F 2\{(0, 0)}/ ∼) −→ SL2(F ); (c, d) 7→
(

1 + cdr d2r
−c2r 1− cdr

)
=

(
d −b
−c a

)(
1 r
0 1

)(
a b
c d

)
.

(9)

We can easily see that this ι is injective and a quandle homomorphism, and the image is

the conjugacy class of
(

1 r
0 1

)
. In particular, the union of the quandle,

∪
r∈F× Im(ιr) is a

subquandle composed of parabolic elements of the conjugacy quandle in SL2(F ). This paper

refers to the subquandle,
∪

r∈F× Im(ιr), as a parabolic quandle (over F ) and denotes it by XF .

Next, we will review X-colorings. Let X be a quandle and D be an oriented link diagram of a

link L ⊂ S3. An X-coloring of D is a map C : {arcs of D} → X such that C(γk) = C(γi)◁C(γj)
at each crossing of D as in the figure below.

For example, when X is the conjugacy quandle of a group G, the coloring condition coincides

with the relations in the Wirtinger presentation of a link L. Hence, we have a bijection,

ColConj(G)(D)
1:1←→ Homgr(π1(R3 \ L), G). (10)
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Figure 2: Positive and negative crossings.

Next, let us focus on colorings with respect to the parabolic quandles XF over fields F . Since

XF is a conjugacy class of SL2(F ) via the map (9), we can easily prove the following:

Proposition 7.1 (A special case of [Nos, Corollary B.1]). Let D be a diagram of a link L.

Fix meridians m1, . . . ,m#L ∈ π1(R3 \ L) in each link-component which is compatible with the

orientation of D. Then, the restriction of (10) gives a bijection from the set ColXF
(D) to the

following set composed of parabolic representations from π1(R3 \ L):{
f ∈ Hom(π1(R3 \ L), SL2(F )) | f(mi) = ιri(xi) for some ri ∈ F×, xi ∈ XF

}
.

In particular, if L is a hyperbolic link and F = C, the holonomy is regarded as a non-

trivial XC-coloring in ColXC(D), and furthermore, this XC-coloring is an isolated point in the

topology of the quotient.

We remark that, it is very often (but not always) the case that the quotient set of ColXF
(D)

modulo conjugation in SL2(F ) is of finite order. In a special case, we will see that small

knots satisfy finiteness (Proposition 7.2). Here, a knot K is said to be small, if there is no

incompressible surface except for a boundary-parallel torus in the knot exterior. For example,

the 2-bridge knots and torus knots are known to be small.

Proposition 7.2. Let F be a field embedded in the complex field C. If D is a diagram of a

small knot K, then the quotient set of ColXF
(D) subject to the conjugacy operation of SL2(F )

is of finite order.

We will omit the proof, since it follows from standard arguments in Culler-Shalen theory

similar to that in [CS] or [CCGLS, Proposition 2.4]. Many small links satisfy the assumption

in Proposition 7.2.

Example 7.3. It is known that every knot of crossing number less than 9 is small. Further-

more, we can see that the quotient is bijective to {x ∈ F×/{±1} | f(x)f(−x) = 0} for some

polynomial f(x). Without proof, we list below the f ’s of some knots for the case Char(F ) = 0.

Knot The defining polynomial f(x)

31 x− 1
41 x2 − x + 1
51 x2 + x− 1
52 x3 − x2 + 1
61 x4 + x2 − x + 1
74 (x3 + 2x− 1)(x4 − x3 + 2x2 − 2x + 1)
77 (x4 + x2 − x + 1)(x6 + x5 + 2x4 + 2x3 + 2x2 + 2x + 1)

Here, as listed in [MR, Appendix 13.3] and [Ri1], we see that the sets ColXF
(D) contain these

hyperbolic equations.
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7.2 Proof of Proposition 3.1

From Proposition 7.1 and the definition of KMW
2 (F ), we will prove Proposition 3.1.

Proof of Proposition 3.1. By definition of parabolicity, f(m) for every meridian m is contained

in the image of ιr for some r ∈ F× [Recall Proposition 7.1], where ιr is the map in (9).

Hence, from the Wirtinger presentation and Lemma 7.4 below, we can canonically obtain a

lift f̃ : π1(R3 \ L)→ S̃L2(F ) defined by setting f̃(m) = (0, f(m)) ∈ KMW
2 (F )× SL2(F ).

Lemma 7.4. Fix r, r′ ∈ F×. Consider the composite θuni ◦ (ιr × ιr′) : (F 2 \ 0)2 → KMW
2 (F )

of the universal 2-cocycle θuni. Then, for any (a, b), (c, d) ∈ F 2 \ 0, the composite satisfies the

equality

θuni ◦ (ιr × ιr′)
(
(a, b), (c, d)

)
= θuni ◦ (ιr × ιr′)

(
(c, d), (a, b)◁ (c, d)

)
.

We will prove Lemma 7.4 by a tedious computation. To this end, denote the restriction

θuni ◦ (ιr × ιr′) by Θ. Then a direct calculation shows an easy formula of this Θ: Precisely, for

any (a, b), (c, d) ∈ F 2, the map Θ : (F 2 \ 0)2 → KMW
2 (F ) satisfies the equality

Θ
(
(a, b), (c, d)

)
=

{
[(abr − 1)c2r′ − (1 + cdr′)a2r,−c2r′/a2r]− [−ra2,−c2r′], if ac ̸= 0,
0, if ac = 0.

(11)

Proof of Lemma 7.4. When ac = 0, we can easily obtain the desired equality in Lemma 7.4

by a direct calculation, although we omit the details.

Thus, we will assume ac ̸= 0, and compute Θ
(
(a, b), (c, d)

)
in some details. Let us denote

ιr(a, b)◁ ιr′(c, d) by ιr(H, I) ∈ XF for short. Then a direct calculation can show the identity

(1− cdr′)rH2 + (1 + HIr)r′c2 = (1− abr)c2r′ + (1 + cdr′)ra2. (12)

Denote the right hand side in (12) by B. Noting [−a2r,−c2r′] = [−a2r,−c2r′/a2r] by the

axiom (ii), the Θ
(
(a, b), (c, d)

)
in (11) is reformulated as [−B,−c2r′/ra2]− [−ra2,−c2r′/ra2].

Further, it follows from Lemma 7.5 (2) with s = r/r′ and x = B below that

[−B,−c2r′/ra2]−[−ra2,−c2r′/a2r] = [B/a2r,−c2r′/a2r]+[−r′/r,B]+[−r′/r, r−1]−[−r′/r,Br−1].

Hence it is enough to show the equality [B/c2r′,−H2r/c2r′] = [B/ra2,−c2r′/a2r] for the proof.

For this purpose, note [B/a2r,−c2r′/a2r] = [B/c2r′,−c2r′/a2r] by Lemma 7.5 (1). Therefore,

the identity B = aHr + c2r′ by definition and the axiom (iii) deduce that

[B/c2r′,−c2r′/a2r] = [B/c2r′,−(B/c2r′ − 1)2(c2r′/a2r)]

= [B/c2r′,−a2H2r/(c2r′a2)] = [B/c2r′,−H2r/c2r′].

In summary, we have the desired equality [B/c2r′,−H2r/c2r′] = [B/a2r,−c2r′/a2r].

Lemma 7.5. (1) [x, y] = [x−1, y−1] = [−xy, y] for any x, y ∈ F×.

(2) [x,−rz2]+[−sy2,−rz2] = [−xsy2,−rz2]+[−s, x]+[−s, r−1]−[−s, xr−1] for any x, y, z, s ∈
F×.
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Proof. First, (1) is directly obtained from the axiom (ii) of KMW
2 (F ).

Next we will prove (2). Following [Sus], we use a notation [a, b, c] := [a, b] + [a, c]− [a, bc].

Since [A,−z2] = [−z−2, A], the purpose is then equivalent to the equality [−r−1z−2, x,−sy2] =

[−s,−r−1, x]. To show this, we set up two identities proven in [Sus, Lemma 6.1] of the forms

[ab, x, c] = [a, bx, c] + [b, x, c]− [a, b, c], [d, e, f ] = [d−1, e, f ] (13)

for any x, a, b, c, d, e, f ∈ F×. By applying a = −rz, b = z, c = −sy2 to these identities, we

have

[−r−1z−2, x,−sy2] = [−z2r, x,−sy2] = [−rz, zx,−sy2] + [z, x,−sy2]− [−rz, z, x]

= [−r−1z−1,−zx,−sy2] + [z, x,−sy2]− [−r−1z−1, z, x] = [−r−1, x,−sy2].

Furthermore, since the equalities [x, b, c] = [c, x, b] = [b, c, x] are known [Sus, Lemma 6.1], re-

peating the computation leads to the desired [−r−1z−2, x,−sy2] = [−r−1, x,−sy2] = [−sy2, r−1, x] =

[−s, r−1, x].

7.3 Preliminaries;

In the next subsection, we will prove Theorems 3.4 and 6.1 that remain to be proved. For this

purpose, this subsection reviews some results [CEGS, Eis] of quandle theory, which explain a

relation between quandles and longitudes.

To this end, we begin by setting up some terminology. Consider the group defined by

generators ex labeled by x ∈ X modulo the relations ex · ey = ey · ex◁y for x, y ∈ X. This

group is called the associated group and denoted by As(X), and has a right action on X defined

by x · ey := x◁ y. Letting O(X) be the set of the orbits, we consider the orbit decomposition

of X, i.e., X = ⊔λ∈O(X)Xλ. In addition, fix a quotient group G of As(X) subject to a central

subgroup. Denote the quotient map As(X)→ G by pG.

Changing into the topological subject, given an X-coloring C ∈ ColX(D) of a link L, let

us correspond each arc γ to pG(eC(γ)) ∈ G. Regarding the arcs as generators of π1(R3 \ L)

by the Wirtinger presentation (see the figure below), the correspondence defines a group

homomorphism ΓC : π1(R3 \ L)→ G.

C

δ

α

γ
β

ΓC⇝
eδ

eα
eγ

eβ

Furthermore, with respect to link components of L, we fix an arc γj on D with 1 ≤ j ≤ #L.

Let xj := C(γj) ∈ Xj, and fix a preferred longitude lj obtained from D. Noticing that each lj
commutes with the meridian γj, we have ΓC(lj) ∈ Stab(xj).

We will give a computation for the value ΓC(lj) as follows. Fix xλ ∈ Xλ for any λ ∈ O(X),

Since the action of G on Xλ is transitive, we can choose a section sλ : Xλ → G such that

xλ · sλ(y) = y for any y ∈ Xλ. Then, we define a map ϕ : X2 → G by the equality

ϕ(g, h) = sλ(g)pG(e−1
g eh)sλ(g ◁ h)−1, for g ∈ Xλ, h ∈ X. (14)

By definition, we see that ϕ(g, h) lies in the stabilizer, Stab(xλ) ⊂ G, of xλ if g ∈ Xλ.

With respect to the coloring C, similar to §6.1, we define a product of the form

SC,j := ϕ(C(α1), C(β1))
ϵ1ϕ(C(α2), C(β2))

ϵ2 · · ·ϕ(C(αNj
), C(βNj

))ϵNj ∈ Stab(xj),
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where the terminology of arcs αi, βi and of sings ϵi are according to §6.1 (see also Figure 1).

Although this construction depends on the choice of xλ’s and the sections sλ’s, the following

is known:

Proposition 7.6 ([CEGS, Lemma 5.8]). The product SC,j equals sλ(C(γ1))−1ΓC(lj)sλ(C(γ1))
in Stab(xj). In particular, if Stab(xj) is abelian, the equality SC,j = ΓC(lj) holds in Stab(xj).

The proof immediately follows from the definitions of ϕ and of the preferred longitude li.

We next review a computation, shown by Eisermann [Eis], of the second quandle homology

HQ
2 (X) (see [CJKLS] for the original definition).

Theorem 7.7 ([Eis, Theorem 9.9]). Let X be a quandle. With respect to an orbit λ ∈ O(X),

we choose xλ ∈ Xλ. Let Stab(xλ) ⊂ As(X) denote the stabilizer of xλ. Then, the sum of the

abelianization ⊕λ∈O(X)Stab(xλ)ab is isomorphic to Z⊕O(X) ⊕HQ
2 (X).

In particular, the class [ΓC(lj)] in the abelianization is contained in Z⊕O(X) ⊕ HQ
2 (X) by

Theorem 7.7. Then, as a corollary of a homotopical study of the homology HQ
2 (X), we can

state a sufficient condition to ensure the non-triviality of the classes in the Z⊕O(X) ⊕HQ
2 (X)

as follows:

Proposition 7.8 (A slight modification of [Nos, Remark 6.4]). Let X be a quandle. If

the group homology Hgr
2 (As(X);Z) is canonically isomorphic to Hgr

2 (Z⊕O(X);Z) ∼= Z⊕O(X) ∧
Z⊕O(X), then any element Υ ∈ HQ

2 (X) admits some X-coloring C of a link such that the

equality Υ = [ΓC(l1)] + · · ·+ [ΓC(l#L)] holds in Z⊕O(X) ⊕HQ
2 (X).

Finally, we mentione that, if X is the parabolic quandle XF , the orbit set O(X) bijectively

corresponds to the multiplicative abelian group F×/(F×)2.

7.4 Proof of Theorems 3.4 and 6.1

First, we aim to prove Theorem 3.4. Inspired by Theorem 7.7, we first determine the associated

groups As(XF ) of the parabolic quandles over F .

Theorem 7.9. Recall the map ∪(r∈F×) ιr : XF → SL2(F ) given in (9). Then, a map

XF −→ Z×KMW
2 (K)× SL2(F ); x 7−→ (1, 0, ιr(x))

gives rise to a group homomorphism As(XF )→ Z⊕O(XF )× S̃L2(F ), which is an isomorphism.

Proof. We first can verify that the map ιr in (9) yields a group epimorphism As(XF ) →
SL2(F ), which is a central extension. It then follows from Lemma 7.4 that the above map

yields a group homomorphism As(XF ) → Z × S̃L2(F ). Since H1(As(XF )) ∼= Z⊕O(XF ), the

universality of central extensions implies that the homomorphism must be an isomorphism.

Corollary 7.10. There is an isomorphism

(Z⊕ F ⊕ K̃MW
2 (F ))⊕O(XF ) ∼= Z⊕O(XF ) ⊕HQ

2 (XF ;Z).

Proof. We will compute HQ
2 (XF ) by virtue of Theorem 7.7. Fix xr =

(
1 r
0 1

)
∈ XF , and

the universal extension E : S̃L2(F ) → SL2(F ). Considering the SL2-standard representation

XF ↶ As(XF ), we will calculate the abelianization of the stabilizer Stab(xr) ⊂ As(XF ). We

easily check that E(Stab(xr)) ⊂ SL2(F ) is the subgroup UF . Hence, Stab(xr) ∼= Z×E−1(UF ) ∼=
Z × K̃MW

2 (F ) × F by Lemma 2.2. Since this is abelian, Theorem 7.7 readily the required

isomorphism.
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Proof of Theorem 3.4. Theorem 7.9 says that the quandle XF satisfies the assumption of

Proposition 7.8. Moreover, Stab(xr) ∼= Z × K̃MW
2 (F ) × F ⊂ ZO(XF ) ⊕ HQ

2 (XF ;Z) is abelian

by Corollary 7.10. As a consequence, Proposition 7.8 implies the conclusion.

Next we will turn to proving Theorem 6.1.

Proof of Theorem 6.1. Let G be PSL2(F ), and let pG be the composite of projections As(XF )→
S̃L2(F ) → SL2(F )

π→ PSL2(F ). Let xr be ιr((0, 1)) ∈ XF . Then we easily see that the sta-

bilizer Stab(xλ) ⊂ G is an abelian group π(UF ) ∼= F . Fix an algebraic closure F → F

Furthermore, we define a section sF : XF → PSL2(F ) by setting sF (0, b) := diag(b−1, b)

and sF (a, b) :=
(

0 −a−1

a b

)
if a ̸= 0. Then, according to the equality (14), we have the

resulting map ϕ : (XF )2 → π(UF ) ∼= F . By an elementary computation, the map ϕ agrees

with the map S, and the image of ϕ is closed under F . Hence, Proposition 7.6 immediately

implies the equality as claimed in Theorem 6.1.

Remark 7.11. Similar to the previous proof, considering the case (X,G) = (XF , S̃L2(F )),

we can give a sum formula for the K2-invariant. However, as the author can not formulate

a section XF → S̃L2(F ) in a simple way, the resulting formula is a little complicated and is

far from applications. The desired formula would be simple; So this paper omit describing

formulae for the K2-invariants.
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Norm. Sup. (4) 2 (1969) 1–62.

[Mi1] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426.

[Milnor] J. Milnor. Introduction to algebraic K-theory, Princeton University Press, Princeton, N.J., 1971.
Annals of Mathematics Studies, No. 72.

[Moo] C. C. Moore, Group extensions of p-adic and adelic linear groups, Inst. Hautes Études Sci. Publ. Math.
No. 35 (1968), 157–222.

[Mor] F. Morel, A1-Algebraic Topology over a Field, Lecture notes in mathematics 2052, Springer 2012.

[MR] C. Maclachlan and A.W. Reid, The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Math.,
219. Springer, 2003.

[Nos] T. Nosaka, Homotopical interpretation of link invariants from finite quandles, Topology Appl. 193 (2015)
1–30.

[Quillen] D. Quillen, Higher Algebraic K-theory I, Lecture Notes in Mathematics 341 (1972), 85–147.

[Ri1] R. Riley, Parabolic representations of knot groups. Proc. London Math. Soc., 24 (1972), 217–242.

[Ri2] , Nonabelian representations of 2-bridge knot groups, Quart. J. Math. Oxford Ser. (2) 35 (1984),
191–208.

[Sus] A. A. Suslin, Torsion in K2 of fields, K-Theory, 1(1): 5–29, 1987.

[Tra] A. T. Tran, On left-orderable fundamental groups and Dehn surgeries on knots, J. Math. Soc. Japan 67
(2015), no.3, 1169–1178.

[Wei] C. A. Weibel, The K-book: An introduction to algebraic K-theory, Graduate Studies in Mathematics,
vol. 145, AMS, 2013.

[Wood] J. W. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971),
257–273.

[Zic] C. Zickert, The volume and Chern-Simons invariant of a representation, Duke Math. J. 150 (2009), no.
3, 489–532.

Faculty of Mathematics, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan

E-mail address: nosaka@math.kyushu-u.ac.jp

18


